Sampling

1 Introduction

Continuing to treat the NHANES dataset as a population, We will try to replicate the process of sampling and CLT for another variable in the NHANES variable, AlcoholYear.

1.1 Summary for AlcoholYear population

# Summary of `alcohol-year`
# 

1.2 Sampling AlcoholYear

# Sampling `alcohol-year`
# Varying samples size and sample count
# 

1.3 Distribution and QQ Plot for the sample

# qq-alcohol-year
# 
# 

1.4 Estimating Population Mean and Confidence Interval using the Sample

# mean and confidence intervals for various sample sizes

1.5 Case Study #2

Let us look at video game data from the University of Berkeley {Stats Lab](

Stat Labs Data Page:

library(tidyverse)
video_games <- read_csv("./data/video-data.csv")
mosaic::inspect(video_games)
## 
## categorical variables:  
##                                                                            name
## 1 time like where freq busy educ sex  age home math work  own cdrom email grade
##       class levels  n missing                                  distribution
## 1 character     91 91       0  (%) ...
Variable  Description
 time  Time spent playing video games in week prior to survey in hours.
 like  Like to play video games
 1=Never played, 2=Very much, 3=Somewhat, 4=Not really, 5=Not at all
 where  Where play video games
 1=Arcade, 2=Home on a system, 3=Home on a computer 4=Home on computer and system, 5=Arcade and Home(system or computer) 6=Arcade and home (both system and computer)
 freq  How often play video games
 1=Daily, 2=Weekly, 3=Monthly, 4=Semesterly
 busy  Play if busy
  0=no, 1=yes
 educ  Is playing video games educational?
  0=no, 1=yes
 sex  Sex
  0=female, 1=male
 age  Age in years
 home  Computer at home
  0=no, 1=yes
 math  Hate math
  0=no, 1=yes
 work  Hours worked for pay in the week prior to survey
 own  Own PC
  0=no, 1=yes
 cdrom  Owned PC has a CDROM
  0=no, 1=yes
 email  HAve email account
  0=no, 1=yes
 grade  Grade expect in course
  4=A, 3=B, 2=C, 1=D, 0=F

1.6 Sampling time

1.7 Distribution and QQ Plot for the sample

1.8 Estimating Population Mean and Confidence Interval using the Sample

1.9 Conclusion

Write up some comments here on your learnings on:
- Sampling - CLT

LS0tDQp0aXRsZTogIlNhbXBsaW5nIg0KYXV0aG9yOiAiQXJ2aW5kIFZlbmthdGFkcmkiDQpkYXRlOiAyMDIzLzEvMTENCmxhc3Rtb2Q6ICdgciBTeXMuRGF0ZSgpYCcNCm91dHB1dDoNCiAgcm1kZm9ybWF0czo6cmVhZHRoZWRvd246DQogICAgaGlnaGxpZ2h0OiBrYXRlDQogICAgdG9jX2Zsb2F0OiBUUlVFDQogICAgdG9jX2RlcHRoOiAyDQogICAgZGZfcHJpbnQ6IHBhZ2VkDQogICAgbnVtYmVyX3NlY3Rpb25zOiBUUlVFDQogICAgY29kZV9mb2xkaW5nOiBoaWRlDQogICAgY29kZV9kb3dubG9hZDogVFJVRQ0KZWRpdG9yX29wdGlvbnM6IA0KICBtYXJrZG93bjogDQogICAgd3JhcDogNzINCi0tLQ0KDQpgYGB7ciBzZXR1cCwgaW5jbHVkZT1GQUxTRX0NCmtuaXRyOjpvcHRzX2NodW5rJHNldChlY2hvID0gVFJVRSwgbWVzc2FnZSA9IEZBTFNFKQ0KbGlicmFyeSh0aWR5dmVyc2UpDQpsaWJyYXJ5KG1vc2FpYykNCmxpYnJhcnkobW9zYWljRGF0YSkNCg0KbGlicmFyeShOSEFORVMpDQpsaWJyYXJ5KGNvd3Bsb3QpDQoNCmBgYA0KDQojIEludHJvZHVjdGlvbg0KDQpDb250aW51aW5nIHRvIHRyZWF0IHRoZSBgTkhBTkVTYCBkYXRhc2V0IGFzIGEgKipwb3B1bGF0aW9uKiosIFdlIHdpbGwNCnRyeSB0byByZXBsaWNhdGUgdGhlIHByb2Nlc3Mgb2Ygc2FtcGxpbmcgYW5kIENMVCBmb3IgYW5vdGhlciB2YXJpYWJsZSBpbg0KdGhlIE5IQU5FUyB2YXJpYWJsZSwgYEFsY29ob2xZZWFyYC4NCg0KIyMgU3VtbWFyeSBmb3IgYEFsY29ob2xZZWFyYCBwb3B1bGF0aW9uDQoNCmBgYHtyLCBzdW1tYXJ5LWFsY29ob2wteWVhcn0NCg0KIyBTdW1tYXJ5IG9mIGBhbGNvaG9sLXllYXJgDQojIA0KDQpgYGANCg0KIyMgU2FtcGxpbmcgYEFsY29ob2xZZWFyYA0KDQpgYGB7ciwgc2FtcGxpbmctYWxjb2hvbC15ZWFyfQ0KDQojIFNhbXBsaW5nIGBhbGNvaG9sLXllYXJgDQojIFZhcnlpbmcgc2FtcGxlcyBzaXplIGFuZCBzYW1wbGUgY291bnQNCiMgDQoNCmBgYA0KDQojIyBEaXN0cmlidXRpb24gYW5kIFFRIFBsb3QgZm9yIHRoZSBzYW1wbGUNCg0KYGBge3IsIHFxLWFsY29ob2wteWVhcn0NCiMgcXEtYWxjb2hvbC15ZWFyDQojIA0KIyANCmBgYA0KDQojIyBFc3RpbWF0aW5nIFBvcHVsYXRpb24gTWVhbiBhbmQgQ29uZmlkZW5jZSBJbnRlcnZhbCB1c2luZyB0aGUgU2FtcGxlDQoNCmBgYHtyLCBtZWFuLWFuZC1jb25maW50fQ0KIyBtZWFuIGFuZCBjb25maWRlbmNlIGludGVydmFscyBmb3IgdmFyaW91cyBzYW1wbGUgc2l6ZXMNCmBgYA0KDQojIyBDYXNlIFN0dWR5ICMyDQoNCkxldCB1cyBsb29rIGF0IHZpZGVvIGdhbWUgZGF0YSBmcm9tIHRoZSBVbml2ZXJzaXR5IG9mIEJlcmtlbGV5IHtTdGF0cw0KTGFiXSgNCg0KW1N0YXQgTGFicyBEYXRhIFBhZ2VdKGh0dHBzOi8vd3d3LnN0YXQuYmVya2VsZXkuZWR1L3VzZXJzL3N0YXRsYWJzL2xhYnMuaHRtbCk6DQoNCmBgYHtyfQ0KbGlicmFyeSh0aWR5dmVyc2UpDQp2aWRlb19nYW1lcyA8LSByZWFkX2NzdigiLi9kYXRhL3ZpZGVvLWRhdGEuY3N2IikNCm1vc2FpYzo6aW5zcGVjdCh2aWRlb19nYW1lcykNCmBgYA0KDQoNCistLS0tLS0tLS0tLS0rLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0rDQp8IFZhcmlhYmxlIMKgIHwgwqBEZXNjcmlwdGlvbiDCoCAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgfA0KKz09PT09PT09PT09PSs9PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PT09PSsNCnwgwqB0aW1lICAgICAgfCDCoFRpbWUgc3BlbnQgcGxheWluZyB2aWRlbyBnYW1lcyBpbiB3ZWVrIHByaW9yIHRvICAgICAgIHwNCnwgICAgICAgICAgICB8IHN1cnZleSBpbiBob3Vycy4gICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB8DQorLS0tLS0tLS0tLS0tKy0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tKw0KfCDCoGxpa2UgICAgICB8IMKgTGlrZSB0byBwbGF5IHZpZGVvIGdhbWVzXCAgICAgICAgICAgICAgICAgICAgICAgICAgICAgfA0KfCAgICAgICAgICAgIHwgwqAxPU5ldmVyIHBsYXllZCwgMj1WZXJ5IG11Y2gsIDM9U29tZXdoYXQsIDQ9Tm90ICAgICAgICB8DQp8ICAgICAgICAgICAgfCByZWFsbHksIDU9Tm90IGF0IGFsbCAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgfA0KKy0tLS0tLS0tLS0tLSstLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLSsNCnwgwqB3aGVyZSAgICAgfCDCoFdoZXJlIHBsYXkgdmlkZW8gZ2FtZXNcICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHwNCnwgICAgICAgICAgICB8IMKgMT1BcmNhZGUsIDI9SG9tZSBvbiBhIHN5c3RlbSwgMz1Ib21lIG9uIGEgY29tcHV0ZXIgICAgfA0KfCAgICAgICAgICAgIHwgND1Ib21lIG9uIGNvbXB1dGVyIGFuZCBzeXN0ZW0sIDU9QXJjYWRlIGFuZCAgICAgICAgICAgIHwNCnwgICAgICAgICAgICB8IEhvbWUoc3lzdGVtIG9yIGNvbXB1dGVyKSA2PUFyY2FkZSBhbmQgaG9tZSAoYm90aCAgICAgICB8DQp8ICAgICAgICAgICAgfCBzeXN0ZW0gYW5kIGNvbXB1dGVyKSAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgfA0KKy0tLS0tLS0tLS0tLSstLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLSsNCnwgwqBmcmVxICAgICAgfCDCoEhvdyBvZnRlbiBwbGF5IHZpZGVvIGdhbWVzXCAgICAgICAgICAgICAgICAgICAgICAgICAgIHwNCnwgICAgICAgICAgICB8IMKgMT1EYWlseSwgMj1XZWVrbHksIDM9TW9udGhseSwgND1TZW1lc3Rlcmx5ICAgICAgICAgICAgfA0KKy0tLS0tLS0tLS0tLSstLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLSsNCnwgwqBidXN5ICAgICAgfCDCoFBsYXkgaWYgYnVzeVwgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHwNCnwgICAgICAgICAgICB8IMKgIDA9bm8sIDE9eWVzICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgfA0KKy0tLS0tLS0tLS0tLSstLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLSsNCnwgwqBlZHVjICAgICAgfCDCoElzIHBsYXlpbmcgdmlkZW8gZ2FtZXMgZWR1Y2F0aW9uYWw/XCAgICAgICAgICAgICAgICAgIHwNCnwgICAgICAgICAgICB8IMKgIDA9bm8sIDE9eWVzICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgfA0KKy0tLS0tLS0tLS0tLSstLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLSsNCnwgwqBzZXggICAgICAgfCDCoFNleFwgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHwNCnwgICAgICAgICAgICB8IMKgIDA9ZmVtYWxlLCAxPW1hbGUgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgfA0KKy0tLS0tLS0tLS0tLSstLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLSsNCnwgwqBhZ2UgICAgICAgfCDCoEFnZSBpbiB5ZWFycyAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHwNCistLS0tLS0tLS0tLS0rLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0rDQp8IMKgaG9tZSAgICAgIHwgwqBDb21wdXRlciBhdCBob21lXCAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB8DQp8ICAgICAgICAgICAgfCDCoCAwPW5vLCAxPXllcyAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHwNCistLS0tLS0tLS0tLS0rLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0rDQp8IMKgbWF0aCAgICAgIHwgwqBIYXRlIG1hdGhcICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB8DQp8ICAgICAgICAgICAgfCDCoCAwPW5vLCAxPXllcyAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgIHwNCistLS0tLS0tLS0tLS0rLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0rDQp8IMKgd29yayAgICAgIHwgwqBIb3VycyB3b3JrZWQgZm9yIHBheSBpbiB0aGUgd2VlayBwcmlvciB0byBzdXJ2ZXkgICAgICB8DQorLS0tLS0tLS0tLS0tKy0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tKw0KfCDCoG93biAgICAgICB8IMKgT3duIFBDXCAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgfA0KfCAgICAgICAgICAgIHwgwqAgMD1ubywgMT15ZXMgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB8DQorLS0tLS0tLS0tLS0tKy0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tKw0KfCDCoGNkcm9tICAgICB8IMKgT3duZWQgUEMgaGFzIGEgQ0RST01cICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgfA0KfCAgICAgICAgICAgIHwgwqAgMD1ubywgMT15ZXMgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB8DQorLS0tLS0tLS0tLS0tKy0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tKw0KfCDCoGVtYWlsICAgICB8IMKgSEF2ZSBlbWFpbCBhY2NvdW50XCAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgfA0KfCAgICAgICAgICAgIHwgwqAgMD1ubywgMT15ZXMgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB8DQorLS0tLS0tLS0tLS0tKy0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tKw0KfCDCoGdyYWRlICAgICB8IMKgR3JhZGUgZXhwZWN0IGluIGNvdXJzZVwgICAgICAgICAgICAgICAgICAgICAgICAgICAgICAgfA0KfCAgICAgICAgICAgIHwgwqAgND1BLCAzPUIsIDI9QywgMT1ELCAwPUYgICAgICAgICAgICAgICAgICAgICAgICAgICAgICB8DQorLS0tLS0tLS0tLS0tKy0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tLS0tKw0KDQojIyBTYW1wbGluZyBgdGltZWANCg0KYGBge3Igc2FtcGxpbmctdGltZX0NCg0KYGBgDQoNCiMjIERpc3RyaWJ1dGlvbiBhbmQgUVEgUGxvdCBmb3IgdGhlIHNhbXBsZQ0KDQpgYGB7ciBkaXN0LXFxLXRpbWV9DQoNCmBgYA0KDQojIyBFc3RpbWF0aW5nIFBvcHVsYXRpb24gTWVhbiBhbmQgQ29uZmlkZW5jZSBJbnRlcnZhbCB1c2luZyB0aGUgU2FtcGxlDQoNCmBgYHtyIHBvcG1lYW4tY29uZmludC10aW1lfQ0KDQpgYGANCg0KDQoNCiMjIENvbmNsdXNpb24NCldyaXRlIHVwIHNvbWUgY29tbWVudHMgaGVyZSBvbiB5b3VyIGxlYXJuaW5ncyBvbjpcDQotIFNhbXBsaW5nDQotIENMVA0KDQoNCg0K